Reactions of Substituted 2,3,7-Triazabicyclo[3.3.0]oct-3-ene-4-carboxylic Acid Esters with Halogens*

A. P. Molchanov, A. V. Stepakov, and R. R. Kostikov
St. Petersburg State University, Universitetskii pr. 2, St. Petersburg, 198904 Russia
e-mail: mol@am1391.spb.edu
Received January 19, 2000

Abstract

Substituted 2,3,7-triazabicyclo[3.3.0]oct-3-ene-4-carboxylic acid esters react with chlorine and bromine to give the corresponding 4-halo-2,3,7-triazabicyclo[3.3.0]oct-2-ene-4-carboxylates. Heating of the latter to $120^{\circ} \mathrm{C}$ under reduced pressure leads to elimination of nitrogen molecule and formation of 6 -halo3 -azabicyclo[3.1.0]hexane-6-carboxylates.

1-Halogen-substituted cyclopropanecarboxylic acid esters are synthesized most frequently by reactions of geminal dihalocyclopropanes with organolithium compounds and subsequent treatment of 1-halocyclopropyllithium with carbon dioxide [1], by reactions of diazo compounds with α-haloacrylic acid esters [2], and by reactions of diazohaloacetic acid esters with unsaturated compounds [3]. In the present communication we report on the synthesis of 1-halo-1cyclopropanecarboxylates via thermal elimination of nitrogen from dihydropyrazoles [4].

1-Substituted 7-aryl-6,8-dioxo-2,3,7-triazabicyclo-[3.3.0]oct-3-ene-4-carboxylic acid esters Ia-In were obtained from the corresponding diazoacetates and N-substituted maleimides [5]. The reactions of esters I with chlorine in chloroform at $0^{\circ} \mathrm{C}$ gave $69-84 \%$ of 7-aryl-4-chloro-6,8-dioxo-2,3,7-triazabicyclo[3.3.0]-oct-2-ene-4-carboxylates as mixtures of endo (IIa-IIg) and exo isomers (IIIa-IIIg) at a ratio of (7-10):1 (Scheme 1). The reaction mixtures obtained from esters Ia-Ie also contained some amount (up to 10\%) of cyclopropane derivatives formed by elimination of nitrogen from the corresponding dihydropyrazoles.

Pure endo isomers IIa, IIb, IId, and IIe were isolated by crystallization. The structure of esters IIa-IIg was derived from the data of elemental analysis and spectral measurements (Tables 1, 2). Compounds IIa-IIe showed in the ${ }^{1} \mathrm{H}$ NMR spectra a singlet from $5-\mathrm{H}$ in the region $\delta 3.6-3.8 \mathrm{ppm}$; the

[^0]corresponding signal of exo isomers IIIa-IIIe was observed in a stronger field (at $\delta 3.43 \mathrm{ppm}$). The ${ }^{1} \mathrm{H}$ NMR spectra of compounds IIf and IIg having no substituent in the bridgehead position contain a signal from the $1-\mathrm{H}$ proton at $\delta 6.3-6.5 \mathrm{ppm}$. The position of this signal is typical of protons on C^{3} in 4,5 -di-hydro- 3 H -pyrazoles. The $5-\mathrm{H}$ signal is located at $\delta 4.0-4.2 \mathrm{ppm}$. The corresponding signals of exo isomers IIIf and IIIg are observed at δ 6.5-6.8 and 3.8-4.0 ppm, respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum of ester IIe the C^{4} signal appears at $\delta_{\mathrm{C}} 105.4 \mathrm{ppm}$. The UV spectra of IIb, IIe, and IIf are characterized by absorption in the region $320-330 \mathrm{~nm}$, which also supports their structure.

The reaction with chlorine of ester Ih having an electron-donor methoxy group in the aromatic ring is accompanied by chlorination of the aromatic substituent. As a result, a 3.5:1 mixture of endo and exo isomers IIh and IIIh is formed. The structure of compounds IIh and IIIh was proved by the elemental analyses (Table 1) and spectral data (Table 2).

Heating of pyrrolopyrazoles IIa-IIh and IIIa-IIIh at $120^{\circ} \mathrm{C}$ under reduced pressure resulted in elimination of nitrogen and formation of substituted 6-chloro-bicyclo[3.1.0]hexane-6-carboxylic acid esters as mixtures of endo (IVa-IVh) and exo isomers ($\mathbf{V a}-\mathbf{V h}$) in up to 87% yield. ${ }^{1} \mathrm{H}$ NMR study of the reaction mixtures showed that thermolysis of endo isomers II gives only endo-cyclopropanes IV, whereas from exo isomers III mixtures of isomeric cyclopropanes IV and \mathbf{V} are obtained. Thus thermolysis of isomeric mixture II/III is accompanied by considerable increase of the fraction of endo isomer IV in the

Scheme 1.

I, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=$ Me, $\mathrm{R}^{3}=3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{d}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{e}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=$ cyclo $-\mathrm{C}_{6} \mathrm{H}_{11}(\mathbf{f}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=$ $3-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{g}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{h}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{i}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, $\mathrm{R}^{3}=\mathrm{Ph}(\mathbf{j}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{k}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{l}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, $\mathrm{R}^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{m}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{n}) ; \mathbf{I I}-\mathbf{V}, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$, $\mathrm{R}^{3}=3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{d}) ;$ $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{e}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=$ cyclo $-\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{f}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}$, $\mathrm{Hlg}=\mathrm{Cl}(\mathbf{g}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=3-\mathrm{Cl}-4-\mathrm{MeOC}_{6} \mathrm{H}_{3}(\mathbf{h}) ; \mathbf{I V}, \mathbf{V}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{i}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ $4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{j}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Cl}(\mathbf{k}) ; \mathbf{V I}, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, $\mathrm{Hlg}=\mathrm{Br} ;$ VII, VIII, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{Me}$, $\mathrm{R}^{2}=\mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{d}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=$ $4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{e}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Hlg}=\mathrm{Br}(\mathbf{f})$.
products. Pure endo isomers IVa, IVb, and IVd-IVg and exo isomer Ve were isolated by column chromatography. Compounds $\mathbf{I i}-\mathbf{I k}$ having an aromatic substituent on C^{1} reacted with chlorine in dichloroethane at $0^{\circ} \mathrm{C}$ to afford directly endo-cyclopropane carboxylates IVi-IVk. Presumably, the initially formed dihydropyrazole with an aryl group in the bridgehead position is unstable, and it loses nitrogen even at $0^{\circ} \mathrm{C}$. The structure of products IV and \mathbf{V} was confirmed by the data of elemental analysis (Table 1) and spectral measurements (Tables 2, 3). In the IR spectra of these compounds we observed an ester carbonyl band at $1720 \mathrm{~cm}^{-1}$. The position of the $5-\mathrm{H}$ signal in the ${ }^{1} \mathrm{H}$ NMR spectra of IV and \mathbf{V} strongly depends on the R^{2} substituent: when $R^{2}=\mathrm{Me}$, it is located at $\delta 3.4$ 3.5 ppm for endo isomers IVa-IVk and $2.8-2.9 \mathrm{ppm}$ for exo isomers $\mathbf{V a}-\mathbf{V k}$; when $\mathrm{R}^{2}=\mathrm{Ar}$, the $5-\mathrm{H}$ signal shifts downfield to $\sim 4.0 \mathrm{ppm}$ due to deshielding effect of the benzene ring.

Treatment of ester Ia with bromine in chloroform at $60^{\circ} \mathrm{C}$ gave a mixture of products from which we isolated by crystallization 36% of ethyl exo-4-bromo-1-methyl-6,8-dioxo-7-(4-tolyl)-2,3,7-triazabicyclo-
[3.3.0]oct-2-ene-4-carboxylate (VI). Heating of VI at $120^{\circ} \mathrm{C}$ under reduced pressure resulted in elimination of nitrogen and formation of a mixture of endo and exo isomers VIIa and VIIIa at a ratio of 1:3.

By reactions of pyrrolopyrazoles $\mathbf{I j} \mathbf{j} \mathbf{I n}$ with bromine in acetic acid at $70^{\circ} \mathrm{C}$ we obtained mixtures of endo- and exo-6-bromo-2,4-dioxo-3-azabicyclo-[3.1.0]hexane-6-carboxylates VIIb-VIIf and VIIIbVIIIf. The ratio of endo and exo isomers was 2.3 (VIIb/VIIIb), 0.7 (VIIc/VIIIc), 0.9 (VIId/VIIId), 1.1 (VIIe/VIIIe), and 12 (VIIf/VIIIf). The structure of brominated cyclopropanes VII and VIII was established on the basis of their elemental compositions and spectral data. The signal from the CH proton of the cyclopropane ring in the ${ }^{1} \mathrm{H}$ NMR spectra of endo isomers VIIa-VIIf was observed in a weaker field relative to the corresponding signal of the exo isomers due to deshielding effect of the cis-bromine atom, δ, ppm: 3.58 (VIIa), 3.90-4.10 (VIIb-VIIe), 3.43 (VIIf) and 2.85 (VIIIa), 3.42-3.60 (VIIIb-VIIIe), 2.90 (VIIIf).

Our results suggest a mechanism involving electrophilic substitution of hydrogen at the nitrogen atom

Table 1. Yields, melting points, and elemental analyses of compounds II-VIII and XIII

Compound no.	Yield, \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	Found, \%			Formula	Calculated, \%		
			C	H	N		C	H	N
IIa	69	98-99 ${ }^{\text {a }}$	55.01	4.43	11.88	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4}$	54.94	4.58	12.02
IIb	68	96-98 ${ }^{\text {a }}$	55.07	4.32	11.94	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4}$	54.94	4.58	12.02
IIc/IIIc	84	$111-112^{\text {a }}$	53.91	4.33	12.34	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{4}$	53.66	4.17	12.52
IId	70	102-104 ${ }^{\text {a }}$	46.37	2.71	10.52	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$	46.22	2.82	10.78
IIe	71	$109-111^{\text {a }}$	41.89	2.51	10.31	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrClN}_{3} \mathrm{O}_{4}$	41.96	2.75	10.49
IIf/IIIf	78	101-103 ${ }^{\text {a }}$	51.47	5.72	12.69	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{4}$	51.30	5.50	12.83
IIg/IIIg	83	116-118 ${ }^{\text {a }}$	47.01	3.15	11.59	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	47.20	3.09	11.80
IIh/IIIh	79	120-122 ${ }^{\text {a }}$	46.67	3.56	10.61	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$	46.64	3.37	10.88
IVa	73	97-98	59.86	5.07	4.27	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{4}$	59.73	4.98	4.36
IVb	76	114-115	59.61	5.01	4.19	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{4}$	59.73	4.98	4.36
IVe/Ve	81	131-133	58.64	4.53	4.31	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{4}$	58.55	4.55	4.55
IVd	73	103-104	50.01	2.99	3.65	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{NO}_{4}$	49.80	3.04	3.87
IVe	73	151-153	45.18	3.03	3.58	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrClNO}_{4}$	45.12	2.95	3.76
IVf	72	116-118	56.18	6.00	4.46	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{4}$	56.10	6.01	4.67
IVg	59	82-83	51.12	3.63	4.09	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	51.23	3.35	4.27
IVh	77	205-207	50.18	3.71	3.69	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{5}$	50.29	3.63	3.91
IVi	94	179-181	53.71	3.04	3.03	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NO}_{4}$	53.73	2.82	3.29
IVj	88	201-202	58.67	3.49	3.46	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	58.46	3.33	3.59
IVk	91	207-209	59.44	4.02	3.31	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	59.42	3.71	3.47
Ve	14	112-113	45.04	2.99	3.51	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrClNO}_{4}$	45.12	2.95	3.76
VI	36	118-120	48.97	4.29	10.25	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{4}$	48.74	4.06	10.66
VIIa/VIIIa	61	87-89	52.61	4.33	3.69	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}_{4}$	52.46	4.37	3.82
VIIb/VIIIb	76	149-152	52.51	3.07	3.14	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrClNO}_{4}$	52.48	2.99	3.22
VIIc/VIIIc	72	109-111	58.92	4.32	2.88	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}$	58.89	4.24	3.27
VIId/VIIId	81	141-143	53.61	3.48	2.72	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrClNO}_{4}$	53.54	3.37	3.12
VIIe/VIIIe	69	98-99	47.18	2.79	5.83	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrClN}_{2} \mathrm{O}_{6}$	47.58	2.52	5.84
VIIf/VIIIf	63	163-165	41.32	2.75	3.23	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrCl}_{2} \mathrm{NO}_{4}$	41.31	2.48	3.44
XIIIa	91	155-157	57.82	5.87	21.69	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$	57.73	5.84	21.99
XIIIb	89	164-165	50.59	4.70	17.90	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	50.63	4.67	17.71
XIIIc	52	194-196	59.13	4.01	14.54	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	58.95	3.89	14.72
XIIId	64	216-218	60.04	4.26	14.37	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$	60.20	4.38	14.03
XIIIe	68	202-203	52.94	3.04	12.95	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$	52.60	3.13	13.14
XIIIf	72	$215^{\text {a }}$	45.84	3.01	11.44	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{4}$	46.18	2.77	11.53
XIIIg	94	222-224	55.39	3.63	13.84	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}_{4}$	55.46	3.32	13.86
XIIIh	86	147-149	52.64	3.21	12.99	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$	52.59	3.13	13.15
XIIII	73	210-212	51.14	3.15	17.08	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{6}$	50.92	3.05	16.96
XIIIj	44	211-213	45.63	3.12	10.43	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{5}$	45.71	3.07	10.66
XIIIk	48	128-130	61.58	5.02	13.17	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$	61.34	4.83	13.41
XIIII	82	221-223	51.38	3.49	11.86	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{5}$	51.51	3.43	12.02

${ }^{\text {a }}$ With decomposition.
with formation of N -halogen derivative IX, homolytic cleavage of the $\mathrm{Hlg}-\mathrm{N}$ bond in IX, and reaction of allylic radical \mathbf{X} with the second halogen molecule to give isomeric products II and III (Scheme 2).

The reduction of chlorocyclopropanes IVi-IVk with zinc in glacial acetic acid was nonstereospecific
and yielded endolexo-isomeric methyl cyclopropanecarboxylates XIa-XIc and XIIa-XIIc at a ratio of 1:1 (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectra of mixtures XI/XII contained doublets from the cyclopropane ring protons at $\delta 3.2$ and $2.9 \mathrm{ppm}(J=8 \mathrm{~Hz})$ and $\delta 3.5$ and $3.0 \mathrm{ppm}(J=3 \mathrm{~Hz})$ for the endo and exo isomers,

Table 2. IR and ${ }^{1} \mathrm{H}$ NMR spectra of compounds II-VIII and XIII

Comp. no.	IR spectrum, $v, \mathrm{~cm}^{-1}$	${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz})$
IIa	$\begin{aligned} & 1030,1110,1140,1250,1300,1380 \mathrm{~s}, 1450,1520, \\ & 1720 \text { v.s, } 3050 \end{aligned}$	$7.28 \mathrm{~d}(2 \mathrm{H}, 8), 7.15 \mathrm{~d}(2 \mathrm{H}, 8), 4.42 \mathrm{q}(2 \mathrm{H}, 7), 3.74 \mathrm{~s}$ (1 H), $2.40 \mathrm{~s}(3 \mathrm{H}), 2.01 \mathrm{~s}(3 \mathrm{H}), 1.42 \mathrm{t}(3 \mathrm{H}, 7)$
IIb	$\begin{aligned} & 910,1020,1110,1140,1250,1300,1380 \mathrm{~s}, 1460, \\ & 1510,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.28-6.98(3 \mathrm{H}), 4.01 \mathrm{~s}(3 \mathrm{H}), 3.75 \mathrm{~s}(1 \mathrm{H}), 2.29 \mathrm{~s}(6 \mathrm{H}), \\ & 2.01 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IIc ${ }^{\text {a }}$	$\begin{aligned} & 940,1050,1110,1140,1260,1310,1380 \mathrm{~s}, 1450 \text {, } \\ & 1510,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.33-7.06(4 \mathrm{H}), 4.05 \mathrm{~s}(3 \mathrm{H}), 3.75 \mathrm{~s}(1 \mathrm{H}), 2.42 \mathrm{~s}(3 \mathrm{H}), \\ & 2.03 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IId	$\begin{aligned} & 900,1010,1100,1140,1180 \mathrm{~s}, 1330,1370,1460 \text {, } \\ & 1490,1720 \text { v.s, } 3050 \end{aligned}$	$7.75-7.45(4 \mathrm{H}), 4.04 \mathrm{~s}(3 \mathrm{H}), 3.81 \mathrm{~s}(1 \mathrm{H}), 2.02 \mathrm{~s}(3 \mathrm{H})$
IIe ${ }^{\text {b }}$	$\begin{aligned} & 890,1020,1080,1110,1130,1260,1380 \mathrm{~s}, 1460 \text {, } \\ & 1490,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.63 \mathrm{~d}(2 \mathrm{H}, 8), 7.15 \mathrm{~d}(2 \mathrm{H}, 8), 4.03 \mathrm{~s}(3 \mathrm{H}), 3.75 \mathrm{~s} \\ & (1 \mathrm{H}), 2.01 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IIf ${ }^{\text {a }}$	$\begin{aligned} & 910,1040,1110,1150,1270,1300,1370 \mathrm{~s}, 1400, \\ & 1460,1720 \text { v.s, } 2940 \mathrm{~s} \end{aligned}$	$6.31 \mathrm{~d}(1 \mathrm{H}, 8), 4.32 \mathrm{~m}(2 \mathrm{H}), 3.98 \mathrm{~d}(1 \mathrm{H}, 8), 3.76 \mathrm{~m}$ $(1 \mathrm{H}), 2.06-1.09(15 \mathrm{H})$
$\mathbf{I I g}{ }^{\text {a, }}$ c	$\begin{aligned} & 910,1020,1050,1110,1240,1300,1370 \mathrm{~s}, 1440, \\ & 1480,1590,1730 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.61-7.22(4 \mathrm{H}), 6.52 \mathrm{~d}(1 \mathrm{H}, 8), 4.35 \mathrm{~m}(2 \mathrm{H}), 4.23 \mathrm{~d} \\ & \quad(1 \mathrm{H}, 8), 1.30 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
IIh ${ }^{\text {a }}$	$\begin{aligned} & 910,1030,1070,1100,1270 \mathrm{~s}, 1380,1440,1510 \mathrm{~s} \text {, } \\ & 1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.33-7.15(3 \mathrm{H}), 6.47 \mathrm{~d}(1 \mathrm{H}, 8), 4.35 \mathrm{~m}(2 \mathrm{H}), 4.19 \mathrm{~d} \\ & (1 \mathrm{H}, 8), 3.88 \mathrm{~s}(3 \mathrm{H}), 1.30 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
IVa	$\begin{aligned} & 870,930,970,1030,1060,1150,1260,1290,1390 \mathrm{~s} \text {, } \\ & 1460,1520,1730 \text { v.s, } 3050 \end{aligned}$	7.26 d ($2 \mathrm{H}, 8$), $7.17 \mathrm{~d}(2 \mathrm{H}, 8), 4.36 \mathrm{q}(2 \mathrm{H}, 7), 3.45 \mathrm{~s}$ $(1 \mathrm{H}), 2.40 \mathrm{~s}(3 \mathrm{H}), 1.65 \mathrm{~s}(3 \mathrm{H}), 1.38 \mathrm{t}(3 \mathrm{H}, 7)$
IVb	$880,940,990,1010,1080,1140,1170,1280 \mathrm{~s}, 1380 \mathrm{~s}$, 1450, 1510, 1720 v.s, 2960, 3050	$\begin{aligned} & 7.25 \mathrm{~m}(1 \mathrm{H}), 7.03 \mathrm{~m}(2 \mathrm{H}), 3.93 \mathrm{~s}(3 \mathrm{H}), 3.46 \mathrm{~s}(1 \mathrm{H}), \\ & 2.29 \mathrm{~s}(6 \mathrm{H}), 1.64 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IVe	$\begin{aligned} & 890,940,1040,1110,1140,1260,1300,1380 \mathrm{~s}, 1450 \text {, } \\ & 1520,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.27 \mathrm{~d}(2 \mathrm{H}, 8), 7.18 \mathrm{~d}(2 \mathrm{H}, 8), 3.92 \mathrm{~s}(3 \mathrm{H}), 3.46 \mathrm{~s} \\ & (1 \mathrm{H}), 2.39 \mathrm{~s}(3 \mathrm{H}), 1.65 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IVd	$\begin{aligned} & 920,990,1020,1080,1140 \mathrm{~s}, 1250,1300,1330, \\ & 1380 \mathrm{~s}, 1460,1500,1720 \text { v.s, } 3050 \end{aligned}$	$7.0-7.52(4 \mathrm{H}), 3.94 \mathrm{~s}(3 \mathrm{H}), 3.51 \mathrm{~s}(1 \mathrm{H}), 1.67 \mathrm{~s}(3 \mathrm{H})$
IVe	$900,990,1020,1080,1140,1260,1290 \mathrm{~s}, 1380 \mathrm{~s}$, 1440, 1490, 1730 v.s, 3050	$\begin{aligned} & 7.61 \mathrm{~d}(2 \mathrm{H}, 8), 7.20 \mathrm{~d}(2 \mathrm{H}, 8), 3.95 \mathrm{~s}(3 \mathrm{H}), 3.49 \mathrm{~s} \\ & (1 \mathrm{H}), 1.66 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
IVf	$\begin{aligned} & 900,970,990,1020,1050,1120,1270 \mathrm{~s}, 1370 \mathrm{~s}, 1460 \text {, } \\ & 1720 \text { v.s, } 2940 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 4.30 \mathrm{q}(2 \mathrm{H}, 7), 3.91 \mathrm{~m}(1 \mathrm{H}), 3.18 \mathrm{~s}(2 \mathrm{H}), 2.06 \mathrm{~m} \\ & (2 \mathrm{H}), 1.82 \mathrm{~m}(2 \mathrm{H}), 1.60 \mathrm{~m}(1 \mathrm{H}), 1.34 \mathrm{t}(3 \mathrm{H}, 7) \\ & 1.5 \mathrm{~m}(3 \mathrm{H}) \end{aligned}$
IVg	$\begin{aligned} & 960,1030,1070,1260 \mathrm{~s}, 1390,1420,1450,1470, \\ & 1510 \mathrm{~s}, 1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.42-7.19(4 \mathrm{H}), 4.38 \mathrm{q}(2 \mathrm{H}, 7), 3.41 \mathrm{~s}(2 \mathrm{H}), 1.37 \mathrm{t} \\ & (3 \mathrm{H}, 7) \end{aligned}$
IVh	$\begin{aligned} & 960,1030,1070,1260 \mathrm{~s}, 1390,1420,1450,1470, \\ & 1510 \mathrm{~s}, 1740 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.37 \mathrm{~d}(1 \mathrm{H}, 3), 7.18 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, 6,3), 6.99 \mathrm{~d}(1 \mathrm{H}, 6), \\ & 4.35 \mathrm{q}(2 \mathrm{H}, 7), 3.93 \mathrm{~s}(3 \mathrm{H}), 3.41 \mathrm{~s}(2 \mathrm{H}), 1.38 \mathrm{t} \\ & (3 \mathrm{H}, 7) \end{aligned}$
IVi	$\begin{aligned} & 910,1020,1090,1160,1250,1290,1380 \mathrm{~s}, 1490 \mathrm{~s} \text {, } \\ & 1600,1720 \text { v.s, } 3050 \end{aligned}$	$7.48-7.27$ (8H), $4.03 \mathrm{~s}(1 \mathrm{H}), 3.57 \mathrm{~s}(3 \mathrm{H})$
IVj	$\begin{aligned} & 920,980,1020,1090,1160,1250,1290,1380 \mathrm{~s}, \\ & 1500 \mathrm{~s}, 1600,1720 \text { v.s, } 3050 \end{aligned}$	$7.52-7.31$ (9H), $4.04 \mathrm{~s}(1 \mathrm{H}), 3.57 \mathrm{~s}(3 \mathrm{H})$
IVk	$\begin{aligned} & 920,980,1020,1090,1160,1250,1290,1380 \mathrm{~s}, 1440, \\ & 1520,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.45 \mathrm{~s}(4 \mathrm{H}), 7.28 \mathrm{~d}(2 \mathrm{H}, 8), 7.17 \mathrm{~d}(2 \mathrm{H}, 8), 4.02 \mathrm{~s} \\ & (1 \mathrm{H}), 3.56 \mathrm{~s}(3 \mathrm{H}), 2.40 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
Ve	$\begin{aligned} & 900,990,1020,1080,1140,1260,1290 \mathrm{~s}, 1380 \mathrm{~s} \text {, } \\ & 1440,1490,1720 \text { v.s, } 3050 \end{aligned}$	$\begin{aligned} & 7.59 \mathrm{~d}(2 \mathrm{H}, 8), 7.18 \mathrm{~d}(2 \mathrm{H}, 8), 3.81 \mathrm{~s}(3 \mathrm{H}), 2.86 \mathrm{~s} \\ & (1 \mathrm{H}), 1.83 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
$\mathbf{V I}{ }^{\text {d }}$	$\begin{aligned} & 930,1110,1140,1260,1380 \mathrm{~s}, 1450,1520,1720 \text { v.s, } \\ & 3050 \end{aligned}$	$7.23 \mathrm{~d}(2 \mathrm{H}, 8), 7.07 \mathrm{~d}(2 \mathrm{H}, 8), 4.30 \mathrm{~m}(2 \mathrm{H}), 3.58 \mathrm{~s}$ $(1 \mathrm{H}), 2.38 \mathrm{~s}(3 \mathrm{H}), 1.97 \mathrm{~s}(3 \mathrm{H}), 1.25 \mathrm{t}(3 \mathrm{H}, 7)$

Table 2. (Contd.)

Comp. no.	IR spectrum, $v, \mathrm{~cm}^{-1}$	${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$
VIIa ${ }^{\text {a }}$	$\begin{aligned} & 1020,1090,1120,1280,1380 \mathrm{~s}, 1450,1520,1720 \text { v.s, } \\ & 3050 \end{aligned}$	$\begin{gathered} 7.25 \mathrm{~d}(2 \mathrm{H}, 8), 7.08 \mathrm{~d}(2 \mathrm{H}, 8), 4.35 \mathrm{q}(2 \mathrm{H}, 7), 3.39 \mathrm{~s} \\ (1 \mathrm{H}), 2.37 \mathrm{~s}(3 \mathrm{H}), 1.63 \mathrm{~s}(3 \mathrm{H}), 1.38 \mathrm{t}(3 \mathrm{H}, 7) \end{gathered}$
VIIb ${ }^{\text {a }}$	$\begin{aligned} & 840,910,1020,1100,1160,1290,1380 \mathrm{~s}, 1440,1500 \\ & \quad 1600,1720 \text { v.s, } 2970 \end{aligned}$	$7.51-7.23$ (9H), $3.98 \mathrm{~s}(1 \mathrm{H}), 3.54 \mathrm{~s}(3 \mathrm{H})$
VIIc ${ }^{\text {a }}$	$\begin{aligned} & 840,910,1030,1100,1160,1290,1380 \mathrm{~s}, 1440,1520 \text {, } \\ & 1720 \text { v.s, } 2960 \end{aligned}$	$\begin{aligned} & 7.45-7.12(8 \mathrm{H}), 3.95 \mathrm{~s}(1 \mathrm{H}), 3.50 \mathrm{~s}(3 \mathrm{H}), 2.46-2.37 \\ & (6 \mathrm{H}) \end{aligned}$
VIId ${ }^{\text {a }}$	$\begin{aligned} & 850,910,1020,1100,1290,1380 \mathrm{~s}, 1440,1520,1600, \\ & 1720 \text { v.s, } 2950 \end{aligned}$	$7.48-7.09(8 \mathrm{H}), 3.97 \mathrm{~s}(1 \mathrm{H}), 3.54 \mathrm{~s}(3 \mathrm{H}), 2.40 \mathrm{~s}(3 \mathrm{H})$
VIIe ${ }^{\text {a }}$	$\begin{aligned} & 840,880,910,1020,1100,1160,1280,1380 \mathrm{~s}, 1440, \\ & 1500,1540,1720 \mathrm{v.s}, 2960 \end{aligned}$	$\begin{aligned} & 8.36 \mathrm{~m}(2 \mathrm{H}), 7.95 \mathrm{~d}(1 \mathrm{H}, 3), 7.88 \mathrm{~d}(1 \mathrm{H}, 3), 7.73 \mathrm{t} \\ & (1 \mathrm{H}, 3), 7.62 \mathrm{t}(1 \mathrm{H}, 3), 7.46 \mathrm{~m}(2 \mathrm{H}), 7.33 \mathrm{~d} \\ & (1 \mathrm{H}, 3), 7.22 \mathrm{~d}(1 \mathrm{H}, 3), 4.09 \mathrm{~s}(1 \mathrm{H}), 3.56 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
VIIf	$\begin{aligned} & 870,920,1040,1080,1140,1260,1290,1380 \mathrm{~s}, 1480 \\ & 1590,1720 \text { v.s, } 2950 \end{aligned}$	$\begin{aligned} & 7.54 \mathrm{~m}(2 \mathrm{H}), 7.26 \mathrm{~m}(1 \mathrm{H}), 3.92 \mathrm{~s}(3 \mathrm{H}), 3.43 \mathrm{~s}(1 \mathrm{H}), \\ & \quad 1.64 \mathrm{~s}(3 \mathrm{H}) \end{aligned}$
XIIIa	$\begin{aligned} & 900,950,1040,1090,1170,1330 \mathrm{~s}, 1460,1610, \\ & 1730 \text { v.s, } 2950,3410 \end{aligned}$	$\begin{gathered} 15.22 \mathrm{br} . \mathrm{s}(1 \mathrm{H}), 4.35 \mathrm{q}(2 \mathrm{H}, 7), 3.86 \mathrm{~m}(1 \mathrm{H}), \\ 2.02 \mathrm{~m}(3 \mathrm{H}), 1.80-1.55(4 \mathrm{H}), 1.31 \mathrm{t}(3 \mathrm{H}, 7) \end{gathered}$
XIIIb	$\begin{aligned} & 890,1020 \mathrm{~s}, 1120,1160,1250,1320 \mathrm{~s}, 1370,1450 \\ & 1600,1720 \text { v.s, } 3040,3400 \end{aligned}$	$\begin{aligned} & 14.15 \mathrm{br} . \mathrm{s}(1 \mathrm{H}), 4.41 \mathrm{q}(2 \mathrm{H}, 7), 3.63 \mathrm{q}(2 \mathrm{H}, 7) \\ & 1.42 \mathrm{t}(3 \mathrm{H}, 7), 1.20 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIC	$\begin{aligned} & \text { 1030, 1090, } 1110,1240,1320 \mathrm{~s}, 1360 \mathrm{~s}, 1730 \text { v.s, } \\ & 3040,3400 \end{aligned}$	$\begin{aligned} & 15.44 \text { br.s }(1 \mathrm{H}), 7.52-7.30(5 \mathrm{H}), 4.40 \mathrm{q}(2 \mathrm{H}, 7) \text {, } \\ & 1.34 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIId	$\begin{aligned} & 1035 \mathrm{~s}, 1090,1110,1235,1320 \mathrm{~s}, 1360 \mathrm{~s}, 1730 \mathrm{v} . \mathrm{s} \text {, } \\ & 3030,3400 \end{aligned}$	$\begin{aligned} & 15.40 \text { br.s }(1 \mathrm{H}), 7.32 \mathrm{~d}(2 \mathrm{H}, 8), 7.26 \mathrm{~d}(2 \mathrm{H}, 8), 4.40 \mathrm{q} \\ & (2 \mathrm{H}, 7), 2.37 \mathrm{~s}(3 \mathrm{H}), 1.34 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIe	$\begin{aligned} & 1035 \mathrm{~s}, 1095,1235,1320 \mathrm{~s}, 1355 \mathrm{~s}, 1495,1735 \text { v.s, } \\ & 3040,3400 \end{aligned}$	$\begin{aligned} & 15.50 \text { br.s }(1 \mathrm{H}), 7.60 \mathrm{~d}(2 \mathrm{H}, 8), 7.44 \mathrm{~d}(2 \mathrm{H}, 8), 4.40 \mathrm{q} \\ & (2 \mathrm{H}, 7), 1.34 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIf	$\begin{aligned} & \text { 1030, 1080, 1110, 1240, 1320, 1360, 1490, } 1730 \text { v.s, } \\ & 3040,3400 \end{aligned}$	$\begin{aligned} & 15.50 \mathrm{br} . \mathrm{s}(1 \mathrm{H}), 7.73 \mathrm{~d}(2 \mathrm{H}, 8), 7.38 \mathrm{~d}(2 \mathrm{H}, 8), 4.40 \mathrm{q} \\ & (2 \mathrm{H}, 7), 1.34 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIg	$\begin{aligned} & 940,1030,1080,1110,1160,1250,1320,1360,1450, \\ & 1510,1600,1740 \text { v.s, } 3050,3400 \end{aligned}$	$\begin{aligned} & 15.40 \text { br.s }(1 \mathrm{H}), 7.52-7.21(4 \mathrm{H}), 3.50 \mathrm{q}(2 \mathrm{H}, 7) \text {, } \\ & 1.36 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIh	$\begin{aligned} & 930,1030,1070,1120,1160,1240,1320,1380,1450, \\ & 1510,1610,1730 \text { v.s, } 3050,3400 \end{aligned}$	$\begin{aligned} & 15.48 \text { br.s }(1 \mathrm{H}), 7.59-7.39(4 \mathrm{H}), 4.40 \mathrm{q}(2 \mathrm{H}, 7) \text {, } \\ & 1.34 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIII	$\begin{aligned} & \text { 1030, 1120, 1240, 1320, } 1345 \mathrm{~s}, 1530,1730 \text { v.s, } 3035 \text {, } \\ & 3395 \end{aligned}$	$\begin{aligned} & 15.53 \text { br.s }(1 \mathrm{H}), 8.39 \mathrm{~d}(2 \mathrm{H}, 9), 7.73 \mathrm{~d}(2 \mathrm{H}, 9), 4.41 \mathrm{q} \\ & (2 \mathrm{H}, 7), 1.35 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIj	$\begin{aligned} & 1030 \mathrm{~s}, 1095,1250,1320 \mathrm{~s}, 1355 \mathrm{~s}, 1730 \text { v.s, } 3030 \text {, } \\ & 3400 \end{aligned}$	$\begin{aligned} & 15.43 \mathrm{br} . \mathrm{s}(1 \mathrm{H}), 7.20 \mathrm{~s}(1 \mathrm{H}), 7.18 \mathrm{~d}(1 \mathrm{H}, 8), 7.12 \mathrm{~d} \\ & (1 \mathrm{H}, 8), 4.38 \mathrm{q}(2 \mathrm{H}, 7), 2.35 \mathrm{~s}(3 \mathrm{H}), 2.09 \mathrm{~s}(3 \mathrm{H}) \\ & 1.36 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$
XIIIk	$\begin{aligned} & 1035 \text { s, 1090, 1110, 1260, 1300, 1320, 1480, 1500, } \\ & 1735 \text { v.s, } 3040,3400 \end{aligned}$	$\begin{aligned} & 15.43 \text { br.s }(1 \mathrm{H}), 7.66 \mathrm{~d}(1 \mathrm{H}, 2), 7.42 \text { d.d }(1 \mathrm{H}, 7,2), \\ & 7.28 \mathrm{~d}(1 \mathrm{H}, 7), 4.40 \mathrm{q}(2 \mathrm{H}, 7), 3.91 \mathrm{~s}(3 \mathrm{H}), 1.34 \mathrm{t} \\ & (3 \mathrm{H}, 7) \end{aligned}$
XIIII	$\begin{aligned} & 900,1040,1090,1110,1170,1250,1330,1360,1450, \\ & 1500,1590,1720 \text { v.s, } 3050,3400 \end{aligned}$	$\begin{aligned} & 15.41 \mathrm{br} . \mathrm{s}(1 \mathrm{H}), 7.44 \mathrm{~d}(1 \mathrm{H}, 3), 7.26 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, 9,3), \\ & 7.04 \mathrm{~d}(1 \mathrm{H}, 9), 4.53 \mathrm{q}(2 \mathrm{H}, 7), 1.49 \mathrm{t}(3 \mathrm{H}, 7) \end{aligned}$

[^1]Scheme 2.

respectively. Compounds XIa-XIc and XIIa-XIIc were identical to those reported previously [6]. Nonstereospecific reduction of bromocyclopropanes with zinc was also reported in [7].

As shown above, compounds $\mathbf{I j}-\mathbf{I n}$ having a substituent in the bridgehead position react with bromine in acetic acid at $70^{\circ} \mathrm{C}$ to give isomeric bromocyclopropanes VIIb-VIIf and VIIIb-VIIIf. On the other hand, bromination of compounds If and Io-Iv (which lack substituent on C^{1}) in acetic acid or chloroform on heating yields pyrrolopyrazoles XIIIa-XIIII (Scheme 4). The sane products were obtained by the action of triethylamine on chlorinated compounds IIf, IIg, and IIh. The structure of compounds XIIIa-XIIII is confirmed by their elemental analyses and IR and ${ }^{1} \mathrm{H}$ NMR spectra (Tables 1,2). In the IR spectra of XIIIa-XIIII we observed absortion at $3400 \mathrm{~cm}^{-1}$ due to stretching vibrations of the NH bond, and their ${ }^{1} \mathrm{H}$ NMR spectra contain a signal at $\delta 15.5 \mathrm{ppm}$ belonging to the NH proton. The reaction of compound $\mathbf{I h}$ with bromine at $70^{\circ} \mathrm{C}$ is accompanied by
substitution of hydrogen in the aromatic ring by bromine to afford product XIIIj. Introduction of bromine into the aromatic ring was also observed for compound Iv at $70^{\circ} \mathrm{C}$, whereas at $20^{\circ} \mathrm{C}$ pyrrolopyrazole XIIIk is formed.

EXPERIMENTAL

The IR spectra were obtained on a UR-20 spectrophotometer from 2% solutions in chloroform. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM-300 instrument (300 MHz) from 2% solutions in CDCl_{3} or DMSO- d_{6}.

Ethyl 4-chloro-1-methyl-6,8-dioxo-7-(4-tolyl)-2,3,7-triazabicyclo[3.3.0]oct-2-ene-4-carboxylate (IIa). A stream of gaseous chlorine was passed at $0^{\circ} \mathrm{C}$ through a solution of $0.35 \mathrm{~g}(1.1 \mathrm{mmol})$ of compound $\mathbf{I a}$ in 30 ml of dry chloroform until saturation $(\sim 1 \mathrm{~min})$. The solvent was removed under reduced pressure at room temperature, and the residue was recrystallized from methanol. Yield of IIa 0.31 g

Scheme 3.

Scheme 4.

If, XIIIa, $\mathrm{R}^{3}=$ cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$; Io, XIIIb, $\mathrm{R}^{3}=\mathrm{Et}$; $\mathbf{I p}$, XIIIc, $\mathrm{R}^{3}=\mathrm{Ph}$; Iq, XIIId, $\mathrm{R}^{3}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} ; \mathbf{I r}$, XIIIe, $\mathrm{R}^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$; Is, XIIIf, $\mathrm{R}^{3}=4-\mathrm{BrC}_{6} \mathrm{H}_{4} ;$ It, XIIIg, $\mathrm{R}^{3}=4-\mathrm{FC}_{6} \mathrm{H}_{4} ; \mathbf{I I g}$, XIIIh, $\mathrm{R}^{3}=3-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathbf{I u}$, XIIII, $\mathrm{R}^{3}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathbf{X I I I J , ~} \mathrm{R}^{3}=$ $4-\mathrm{CH}_{3} \mathrm{O}-3-\mathrm{BrC}_{6} \mathrm{H}_{3}$; Iv, XIIIk, $\mathrm{R}^{3}=2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$; IIh, XIIII, $\mathrm{R}^{3}=3-\mathrm{Cl}-4-\mathrm{MeOC}_{6} \mathrm{H}_{3}$.

Table 3. Chemical shifts of some protons in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds IIIa-IIIh, Vb-Ve, VIIIa-VIIIf, $\delta, \operatorname{ppm}(J, \mathrm{~Hz})$

Compound no.	$5-\mathrm{H}$	COOCH_{3}
IIIa	3.43 s	3.88 s
IIIb	3.42 s	3.88 s
IIIc	3.43 s	3.89 s
IIId	3.45 s	3.91 s
IIIe	3.43 s	3.89 s
IIf	$6.52 \mathrm{~d}(J=8)^{\mathrm{a}}$	$3.88 \mathrm{~d}(J=8)$
IIIg	$6.78 \mathrm{~d}(J=8)^{\mathrm{a}}$	$4.02 \mathrm{~d}(J=8)$
IIIh	$6.83 \mathrm{~d}(J=8)^{\mathrm{a}}$	$4.04 \mathrm{~d}(J=8)$
Vb	2.83 s	3.83 s
Vc	2.84 s	3.82 s
Vd	2.88 s	3.82 s
Ve	2.86 s	3.81 s
VIIIa	2.85 s	$4.24 \mathrm{q}(J=7), \mathrm{b}$
		$1.21 \mathrm{t}(J=7)$
VIIIb	3.46 s	3.87 s
VIIIc	3.42 s	3.86 s
VIIId	3.44 s	3.86 s
VIIIe	3.60 s	3.88 s
VIIIf	2.90 s	3.80 s

${ }^{\text {a }}$ 1-H.
${ }^{\mathrm{b}} \mathrm{C}_{2} \mathrm{H}_{5}$.
(71\%). Esters IIb-IIg and IIIb-IIIg were obtained in a similar way.

Ethyl 6-chloro-1-methyl-2,4-dioxo-3-(4-tolyl)-3-azabicyclo[3.1.0]hexane-6-carboxylate (IVa). Compound IIa, $0.20 \mathrm{~g}(0.57 \mathrm{mmol})$, was heated at $120^{\circ} \mathrm{C}$ under a residual pressure of 20 mm until nitrogen no longer evolved (5 min). The resulting material was cooled and recrystallized from methanol. Yield of ester IVa 0.134 g . Compounds IVb-IVg were obtained in a similar way.

Methyl 6-chloro-1-(4-chlorophenyl)-2,4-dioxo-3-phenyl-3-azabicyclo[3.1.0]hexane-6-carboxylate (IVj). A stream of dry gaseous chlorine was passed at $0^{\circ} \mathrm{C}$ through a solution of $0.3 \mathrm{~g}(0.78 \mathrm{mmol})$ of compound $\mathbf{I j}$ in 30 ml of anhydrous 1,2-dichloroethane until saturation ($\sim 2 \mathrm{~min}$). The solvent was evaporated at room temperature, and the residue was recrystallized from ethanol. Yield of ester IVj 0.27 g (88%). Compounds IVi and IVk were obtained by a similar procedure.

Ethyl 4-bromo-1-methyl-6,8-dioxo-7-(4-tolyl)-2,3,7-triazabicyclo[3.3.0]oct-2-ene-4-carboxylate (VI). A mixture of $0.6 \mathrm{~g}(2 \mathrm{mmol})$ of compound Ia and 1.6 g of bromine in 30 ml of dry chloroform was heated for 3 h . The mixture was cooled and treated
with a solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, the organic phase was separated, dried over MgSO_{4}, and evaporated, and the residue was recrystallized from methanol. Yield of ester VI 0.27 g (36%).

Ethyl 6-bromo-1-methyl-2,4-dioxo-3-(4-tolyl)-3-azabicyclo[3.1.0]hexane-6-carboxylate (isomeric mixture VIIa/VIIIa). Ester VI, $0.20 \mathrm{~g}(0.5 \mathrm{mmol})$, was heated at $130^{\circ} \mathrm{C}$ under a residual pressure of 20 mm until nitrogen no longer evolved (4 min). The resulting material was cooled and recrystallized from methanol. Yield of VIIa/VIIIa $0.11 \mathrm{~g}(61 \%)$.

Methyl 6-bromo-3-(3,4-dichlorophenyl)-1-methyl-2,4-dioxo-3-azabicyclo[3.1.0]hexane-6-carboxylate (VIIf). A mixture of $0.7 \mathrm{~g}(2 \mathrm{mmol})$ of compound In and 1.6 g of bromine in 20 ml of glacial acetic acid was heated for 5 h at $70^{\circ} \mathrm{C}$. The solvent and excess bromine were distilled off, and a mixture of diethyl ether and hexane (1:1) was added to the residue for crystallization. The precipitate was filtered off and recrystallized from ethanol. Yield of ester VIIf 0.5 g (63%). Isomer ratio VIIf: VIIIf 12:1 (before recrystallization). Esters VIIb-VIIe and VIIIb-VIIIe were synthesized in a similar way; according to the ${ }^{1} \mathrm{H}$ NMR data, the isomer ratio was 2.3 (VIIb/VIIIb), 4.1 (VIIc/VIIIc), 0.9 (VIId/VIIId), 1.1 (VIIe/VIIIe).

Methyl 1-(4-chlorophenyl)-3-phenyl-3-azabicy-clo[3.1.0]hexane-6-carboxylate (XIa/XIIa). A mixture of $62 \mathrm{mg}(0.25 \mathrm{mmol})$ of chlorocyclopropane $\mathbf{I V j}$ and 0.7 g of zinc dust in 15 ml of glacial acetic acid was heated for 1 h . The mixture was cooled and filtered, acetic acid was removed from the filtrate under reduced pressure, the residue was dissolved in chloroform, the chloroform solution was filtered, washed with a 10% solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over MgSO_{4}, and evaporated, and the residue was purified by column chromatography on silica gel (eluent hexaneether, $1: 2$ by volume). Yield of XIa/XIIa 69%. Isomeric mixtures XIb/XIIb and XIc/XIIc were isolated in 71% and 75% yield, respectively.

Ethyl 7-cyclohexyl-6,8-dioxo-3,3,7-triazabicyclo[3.3.0] octa-1(5),3-diene-4-carboxylate (XIIIa). A solution of $230 \mathrm{mg}(0.8 \mathrm{mmol})$ of compound If and 0.2 ml of bromine in 10 ml of chloroform was heated for 3 h . The mixture was cooled and washed with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the organic phase was separated, dried over MgSO_{4}, and evaporated, and the residue was recrystallized from hexane-acetone. Yield of ester XIIIa 210 mg (91%). Compounds XIIIb and XIIIg were synthesized in a similar way.

Ethyl 6,8-dioxo-7-phenyl-3,3,7-triazabicyclo-[3.3.0]octa-1(5),3-diene-4-carboxylate (XIIIc). A mixture of $1 \mathrm{~g}(3.5 \mathrm{mmol})$ of compound $\mathbf{I p}$ and 1 ml of bromine in 30 ml of acetic acid was heated
for 2 h at $60-70^{\circ} \mathrm{C}$. The mixture was cooled and poured into 100 ml of water, and the precipitate was filtered off, washed with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and water, and recrystallized from aqueous ethanol. Yield of XIIIc $0.5 \mathrm{~g}(52 \%)$. Esters XIIId-XIIIf and XIIIiXIIIk were synthesized in a similar way.

Ethyl 7-(3-chlorophenyl)-6,8-dioxo-3,3,7-tri-azabicyclo[3.3.0]octa-1(5),3-diene-4-carboxylate (XIIIh). A mixture of $70 \mathrm{mg}(0.2 \mathrm{mmol})$ of compound IIg and 40 mg of triethylamine in 7 ml of chloroform was stirred for 2 h . The mixture was washed with 10% hydrochloric acid, and the organic phase was dried over MgSO_{4}. The solvent was evaporated, and the residue was recrystallized from methanol. Yield of ester XIIIh 60 mg (86%). Compound XIIII was obtained in a similar way.

REFERENCES

1. Sander, V. and Weyerstahl, P., Chem. Ber., 1978, vol. 111, no. 12, pp. 3879-3891; Müller, C., Stier, F., and Weyerstahl, P., Chem. Ber., 1977, vol. 110, no. 1, pp. 124-137; Schmidt, A. and Kobrich, G., Tetrahedron Lett., 1974, no. 30, pp. 2561-2564.
2. Walborsky, H.M. and Impastato, F.J., J. Am. Chem. Soc., 1959, vol. 81, no. 21, pp. 5835-5837; Walborsky, H.M., Barash, L., Yuong, A.E., and Impastato, F.J., J. Am. Chem. Soc., 1961, vol. 83, no. 11, pp. 2517-2525; Walborsky, H.M. and Yuong, A.E., J. Am. Chem. Soc., 1964, vol. 86, no. 16, pp. 3288-3296.
3. Schöllkopf, U., Gerhart, F., Reetz, M., Frasnelli, H., and Schumacher, H., Justus Liebigs Ann. Chem., 1968, vol. 716, pp. 204-206; Schöllkopf, U. and Reetz, M., Justus Liebigs Ann. Chem., 1973, no. 4, pp. 599-604.
4. Bushby, R., Methoden der organischen Chemie (Houben-Weyl), de Meijere, A., Ed., Stuttgart: Georg Thieme, 1997, 4th ed., vol. E17b, p. 1059.
5. Molchanov, A.P., Stepakov, A.V., and Kostikov, R.R., Russ. J. Org. Chem., 2000, vol. 36, no. 8, pp. 11351138.
6. Molchanov, A.P., Stepakov, A.V., and Kostikov, R.R., Russ. J. Org. Chem., 2000, vol. 36, no. 6, pp. 899903.
7. D'yachenko, A.I., Korneva, O.S., and Nefedov, O.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, no. 11, pp. 2653-2654.

[^0]: * This study was financially supported by the Ministry of Education of the Russian Federation (project no. 97-0-9.4-18) and by the INTAS program (grant no. 961325).

[^1]: ${ }^{\text {a }}$ Mixture of endo and exo isomers.
 ${ }^{\mathrm{b}}{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 169.6, 167.9, 164.8, 132.9, 130.1, 128.1, 123.8, 105.4, 103.6, 55.7, 51.5, 10.2.
 ${ }^{\text {c }}{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 167.4, 165.2, 163.2, 134.6, 131.2, 130.0, 129.4, 126.2, 121.2, 104.4, 95.7, 64.9, 45.1, 13.6.
 ${ }^{\text {d }}{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 169.9, 169.4, 163.1, 139.9, 130.4, 128.4, 126.4, 101.3, 94.8, 65.2, 57.1, 21.6.

